
SPOKEN LANGUAGE ACCENT
DETECTION
Probabilistic Accent Detection Using
Hidden Markov Models

Tré Calhoun
La Vesha Parker
Andrew Vaslas
Nicolas Vera
Cornell University

CONTENTS

Introduction iv

PART I HTK SOFTWARE SUITE

1 Installation of HTK Software 2

1.1 General Installation information 2
1.2 Mac OS X 2
1.3 Windows 3

2 Training and Testing Corpus Acquisition 5

2.1 The Online Speech/Corpora Archive and Analysis Resource (OSCAAR) 5

3 Training Corpus with HTK 7

3.1 Record or Input Sound Files 7
3.2 Labeling the Sound Files 8

4 Coding the Data 9

4.1 Mel Frequency Cepstral Coefficients 9
4.2 Obtaining .mfcc Files 9

4.2.1 Configuration File 9
4.2.2 The Creation of targetlist.txt 10

4.3 Command Line Actions 10

5 Setting Parameters for the Hidden Markov Model 11

5.1 What is a Hidden Markov Model? 11
5.2 HMMs and Accent Detection 12

5.2.1 Overview 12
5.2.2 HMM Definition 12
5.2.3 Training 14

5.3 Command Line Actions 14

6 Defining Your Task 16

6.1 Define Your Grammar 16
6.2 Define Your Dictionary 17
6.3 Generating the Network 17

7 Recognition 18

7.1 Procedure 18
7.2 Command Line Actions 18

PART II ERROR HANDLING, SOFTWARE USED AND RESOURCES

A Error Handling 21

B Software Used 22

C References 24

References 25

iii

INTRODUCTION

Various accents pose a problem to automated speech recognition software. If accents can
be more easily detected, different spoken language models can be applied to speech recog-
nition software to make for a more correct interpretation of spoken language.

In this tutorial, we describe our exploration of Cambridge University’s Hidden Markov
Model Toolkit as a tool to use for spoken accent prediction. We explore the classification
of the pronunciation of the word ”security” as spoken by native English and native Spanish
speakers.

We provide additional data in data general/ for those who wish to explore additional
accent classifications.

PART I

THE HIDDEN MARKOV MODEL
TOOLKIT SOFTWARE SUITE

CHAPTER 1

INSTALLATION OF HTK SOFTWARE

1.1 General Installation information

The website for HTK can be found here. The HTK developers require that you register
for a username and password through their site before downloading their software. After
registering, visit the downloads page and download the HTK source code (available as a
tarball). It is also useful to download the HTKBook as a PDF (available on the downloads
page, below the software). If you do not wish to download the book, you can view the
book online after registering.

1.2 Mac OS X

In order to install HTK for Mac OS X, you first need to make sure that you have Xcode
developer tools and X11 installed.

What follows are the installation instructions taken directly from the README in the root
directory of the unziped htk/ directory, save a bit of formatting. We do not claim this
work, and repeat it here only for convenience.

http://htk.eng.cam.ac.uk/
http://htk.eng.cam.ac.uk/register.shtml
http://htk.eng.cam.ac.uk/register.shtml
http://htk.eng.cam.ac.uk/download.shtml
http://htk.eng.cam.ac.uk/docs/docs.shtml
http://htk.eng.cam.ac.uk/docs/docs.shtml

1.2.0.1 Compiling & Installing HTK under UNIX/Linux, OS X or Cygwin

After unpacking the sources, cd to the htk/ directory.

There are now two ways to install HTK, the ”traditional” and the ”new”. Up to now HTK
has always installed its tools as they were built, and installed them to a directory such as
”bin.linux” so that binaries for different architectures can be installed in a home direc-
tory say. If you want to install in this way, please add the option ”--enable-trad-htk”
when you run configure.

The ”new” method installs by default into /usr/local/bin (equivalent to a configure
option of ”--prefix=/usr/local”).

1. decide which of the above methods you wish to use

2. cd to htk, then run ./configure (with appropriate options, run ”./configure
--help” if unsure). If you don’t want to build the programs in HLMTools add the
–disable-hlmtools option.

3. make all

4. make install

Running ”make install” will install them. This step may need to be done as root, if
you are not installing them in your home directory.

Notes for particular Unix variants:
Solaris: if ”make” isn’t installed you may need to add /opt/sfw/bin and /usr/ccs/bin
to your path and run ”./configure MAKE=gmake” with any other options you re-
quire. Then run ”gmake” instead of ”make”, alternatively you can create a symbolic link
called ”make” somewhere it your path to /opt/sfw/bin/gmake

1.3 Windows

Once again, what follows are the installation instructions taken directly from the README
in the root directory of the unziped htk/ directory, save a bit of formatting. We do not
claim this work, and repeat it here only for convenience.

1.3.0.2 Compiling & Installing HTK under Windows

Prerequisites:

HTK has been verified to compile using Microsoft Visual Studio.

For testing, you will require a Perl interpreter such as ActivePerl.

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

3

4 INSTALLATION OF HTK SOFTWARE

You will need a tool such as 7-zip or winzip (commercial) for unpacking the HTK
source code archive.

It it is helpful if you have some familiarity with using the DOS command line inter-
face, as you will need to interact with it in order to compile, install and run HTK.

Ensure that your PATH contains:

C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin

Or if you are using older versions:

C:\Program Files\Microsoft Visual Studio\VC98\bin

Compilation:

1. Unpack the HTK sources using 7-zip.

2. Open a DOS command window: Click Start, select Run type cmd at the prompt and
click OK.

3. cd into the directory in which you unpacked the sources.

4. cd into the htk/ directory. Type:

cd htk

5. Create a directory for the library and tools. Type:

mkdir bin.win32

6. Run VCVARS32 (it should be in your path, see prerequisites above)

7. Build the HTK Library, which provides the common functionality used by the HTK
Tools. Enter the following commands:

cd HTKLib
nmake /f htk_htklib_nt.mkf all
cd ..

8. Build the HTK Tools

cd HTKTools
nmake /f htk_htktools_nt.mkf all
cd ..
cd HLMLib
nmake /f htk_hlmlib_nt.mkf all
cd ..
cd HLMTools
nmake /f htk_hlmtools_nt.mkf all
cd ..

Installation:
The HTK tools have now been built and are in the bin.win32 directory. You should add
this directory to your PATH, so that you can run them easily from the command line in
future.

CHAPTER 2

TRAINING AND TESTING CORPUS
ACQUISITION

Everyone has the right to life, liberty and security of person.
—United Nations’ Declaration of Human Rights [4]

2.1 The Online Speech/Corpora Archive and Analysis Resource (OSCAAR)

Northwestern University’s Online Speech/Corpora Archive and Analysis Resource (OS-
CAAR) is a collection of speech recordings from speakers with different backgrounds,
assembled from various datasets.

To request access to the data available through OSCAAR, you can submit a request for
access to the OSCAAR collections. In our experience, requests are handled about 24 – 48
hours after being sent.

The dataset that we found most appropriate for our goal of accent detection and classifi-
cation is the ALLSTAR dataset from the Speech and Communication Research Group at
Northwestern University. The dataset is massive, and we found that a subset of samples fit
our needs well.

Part of the dataset features recording of talkers from different backgrounds saying 20 sen-
tences pulled from the Declaration of Human Rights in English. For our proof of concept,

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

5

https://oscaar.ci.northwestern.edu/
https://oscaar.ci.northwestern.edu/
https://oscaar.ci.northwestern.edu/requests.php
https://oscaar.ci.northwestern.edu/requests.php
http://groups.linguistics.northwestern.edu/speech_comm_group/allsstar/

6 TRAINING AND TESTING CORPUS ACQUISITION

we used a subset of that portion of speakers reading Article 3 from the DHR: ”Everyone
has the right to life liberty and security of person.” That subset of the data featured talkers
with the following native tongues:

Brazilian Portuguese

English

French

German

Hebrew

Hindi

Japanese

Korean

Mandarin Chinese

Persian (Farsi)

Russian

Spanish

Turkish

Vietnamese

We use the Spanish and English samples, but make all of them available in data general/.

CHAPTER 3

TRAINING CORPUS WITH HTK

3.1 Record or Input Sound Files

It is possible to record one’s own audio for this classification using HSLab. For those like
us who already have a dataset and will not use the recording features of HSLab, you can
use a configuration file to change the anticipated input format to the program.

Having acquired the sound clips from OSCAAR, we needed to select two distinct native
tongues. Native English and native Spanish speakers were selected since these subsets had
what we felt was a sufficient amount of data for the purposes of this project; some of the
others only had a few samples and having more data is conducive to the training of the
HMM.

About 1
4

th of our data was set aside for testing. In data/train/ and data/test/, the
.wav audio clips themselves are stored in wav/ and their respective .mfcc and .lab
files were stored in mfcc/ and lab/. The free audio editor Audacity was used to crop
the .wav files so that only the word ”security” could be heard. Audacity allowed us to
generate silent audio surrounding the cropped clips for easier labelling.

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

7

8 TRAINING CORPUS WITH HTK

3.2 Labeling the Sound Files

HSLab allowed us to label the boundaries between words and the silence around them in
each .wav file. With a beginning silence, the spoken word, and the ending silence labeled,
a .lab file for each clip was created. The .lab files are plain text files marking the start
and end sample times for each of these labeled sections:

data/train/lab/english_f1_security.lab
20408 4239909 sil
4342857 9941497 security_english
9982766 13996825 sil

CHAPTER 4

CODING THE DATA

4.1 Mel Frequency Cepstral Coefficients

Here we describe what a MFCC is and its usefulness to us.

4.2 Obtaining .mfcc Files

The .wav files themselves cannot be analyzed using HTK, so we used HCopy to convert
the original .wav files into .mfcc files. The .mfcc files, which each contain a
set of vector representations of the sound signal, can be analyzed. Each 25ms segment
is represented by a vector of acoustical coefficients, which provides a description of that
segment’s spectral properties. HCopy requires a configuration file to specify its parameters:

4.2.1 Configuration File

#analysis.conf
SOURCEFORMAT = WAV # Gives the format of the speech files
TARGETKIND = MFCC_0_D_A # Identifier of the coefficients to use

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

9

10 CODING THE DATA

Unit = 0.1 micro-second :
WINDOWSIZE = 250000.0 # = 25 ms = length of a time frame
TARGETRATE = 100000.0 # = 10 ms = frame periodicity

NUMCEPS = 12 # Number of MFCC coeffs (here from c1 to c12)
USEHAMMING = T # Use of Hamming function for windowing frames
PREEMCOEF = 0.97 # Pre-emphasis coefficient
NUMCHANS = 26 # Number of filterbank channels
CEPLIFTER = 22 # Length of cepstral liftering

4.2.2 The Creation of targetlist.txt

The file trainlist.txt gives the name and directory of each waveform file and their
respective target coefficient files:

data/train/wav/english_f1_security.wav data/train/mfcc/english_f1_security.mfcc
data/train/wav/english_f2_security.wav data/train/mfcc/english_f2_security.mfcc

...

(and so on)

4.3 Command Line Actions

Use the following command to execute this conversion:

HCopy -A -D -C analysis.conf -S trainlist.txt

CHAPTER 5

SETTING PARAMETERS FOR THE
HIDDEN MARKOV MODEL

5.1 What is a Hidden Markov Model?

A hidden Markov model (HMM) is a type of Markov model, which means future states
depend only on the current state. Classically, the states in this model are classified as one of
two types: observed and hidden. This model states that the observed states are determined
by the underlying hidden states; thus, the observations are inputs to the problem and the
hidden states need to be discovered. There are two key types of probabilities that connect
the states: emission probabilities, the probability of an observation state given a hidden
state; and transition probabilities, the probability of a hidden state given a previous hidden
state (the Markov property). Given a number of hidden states and a set of observations,
we can learn the probabilities to maximize the collective probability of each observation.
Given the states, the transition and emission probabilities, and a sound, we can use a HMM
to determine the probability of the sound under the model.

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

11

12 SETTING PARAMETERS FOR THE HIDDEN MARKOV MODEL

5.2 HMMs and Accent Detection

5.2.1 Overview

A hidden Markov model is a good model to use for accent detection because a discretized
sound directly maps to the observation states as inputs to the model. These observed sounds
segments are dependent on the speaker’s accent, which means there must be underlying
hidden states that model the likelihood of the sound segment produced given the accent (the
emission probability). It is reasonable to believe that transition probabilities exist between
the hidden states, as accents may dictate that certain sounds should have a high or low
likelihood of following another sound. We use HMMs by defining an HMM for each of the
acoustical events (English, Spanish, and silence). Then, given a sound and its correct event
type, we want to train each HMM (i.e. determine the transition and emission probabilities)
so that the corresponding HMM with the same event type returns a probability that is
much higher than the the probabilities that the others return. Finally, given a sound, we can
predict its acoustical event type using the one-vs-all methodology by calculating which
HMM returns the highest probability. More details about the process are below.

5.2.2 HMM Definition

To implement an HMM, we must first define its structure. We define each HMM as a
continuous density HMM with n states in total, 2 of which are non-emitting (HTK re-
serves the first and last states due to its internal implementation). Due to the fact that each
observation (a 25ms segment) is represented by a vector of acoustical coefficients, our
emission probability must actually be a vector of sub-emission probabilities corresponding
to each acoustical coefficient. As each acoustical coefficient is a floating-point number,
we describe the probability of the coefficient by using a Gaussian distribution. Gaussian
distributions are defined by a mean and variance; thus, we can simply describe the overall
emission of each hidden state by a vector of means and a vector of variances. (The cardi-
nality of the mean and variance vectors is equal to the number of acoustical coefficients.)
We also define a n × n transition matrix that defines the transition probabilities between
hidden states.

We define ”prototype” HMM description files for each of the acoustical events that con-
tains this information; each file is equivalent, save for different names. These files are
prototypes, as they describe the structure of the HMM, but the values (mean and variance
vectors and transition probabilities) are relatively arbitrary, and will be corrected during
initialization and training (described below). Thus, we set each mean as a vector of zeros,
each variance as a vector of ones, and the transition probabilities are established so that
the sum of transitioning from state i to any state is equal to 1 (except for the final, nth
state, which is accepting, so all of its transition probabilities equal 0). Note that setting any
index of this transition matrix to 0 means that it will always be 0, even after initialization
and training. We use n = 6 states, and mean and variance vector sizes of 39, as there are
39 MFCC acoustical coefficients.

HMMS AND ACCENT DETECTION 13

˜o <VecSize> 39 <MFCC_0_D_A>
˜h "security_english"
<BeginHMM>

<NumStates> 6
<State> 2

<Mean> 39
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<State> 3
<Mean> 39

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<State> 4
<Mean> 39

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<State> 5
<Mean> 39

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<TransP> 6
0.0 0.5 0.5 0.0 0.0 0.0
0.0 0.4 0.3 0.3 0.0 0.0
0.0 0.0 0.4 0.3 0.3 0.0
0.0 0.0 0.0 0.4 0.3 0.3
0.0 0.0 0.0 0.0 0.5 0.5
0.0 0.0 0.0 0.0 0.0 0.0

<EndHMM>

14 SETTING PARAMETERS FOR THE HIDDEN MARKOV MODEL

The text above shows our prototype HMM definition for the English accent. These proto-
types are saved as model/proto/hmm security english, model/proto/
hmm security spanish, and model/proto/hmm sil for the corresponding sound
type in a model/proto/ directory.

5.2.3 Training

Training is the process of estimating the parameters of the HMMs by using labelled sound
examples. To start, we initialize each HMM with the HTK tool HInit, which time-aligns the
training data with a Viterbi algorithm. Doing this estimates initial parameters (mean and
variance vectors and transition probabilities) based of off the prototype HMM description
file for each initial HMM. Then we train the models by using the HTK tool HRest on each
HMM until convergence. HRest uses Baum-Welch parameter re-estimation to perform
one re-estimation iteration on an input HMM, producing a new HMM. Starting from the
initialized HMMs, we iteratively use HRest until its change measure does not decrease (i.e.
until it converges). We performed one iteration on the Silence HMM and three iterations
on the English and Spanish HMMs.

This completes the training of the HMMs; we now have models such that if we input a
single acoustical event (a sound of silence, a sound of ”security” in an English accent, or
a sound of ”security” in Spanish accent), we can predict which event type it is with some
accuracy. More detail about HInit and HRest can be found in the HTKBook.

5.3 Command Line Actions

The following command initializes an HMM with HInit:

HInit -A -D -T 1 -S trainlist.txt -M model/hmm0
-H model/proto/hmmfile -l label -L label_dir nameofhmm

Here:

hmmfile is contained in model/proto/hmm security english, model/proto/hmm security spanish
or model/proto/hmm sil

label is ”english”, ”spanish”, or ”sil”

label dir is in data/train/lab/

nameofhmm is ”english”, ”spanish”, or ”sil”

This must be repeated for each model: English, Spanish, and sil.

The following command performs one re-estimation iteration with HRest:

HRest -A -D -T 1 -S trainlist.txt -M model/hmmi -H vFloors
-H model/hmmi-1/hmmfile -l label -L label_dir nameofhmm

Here:

model/hmmi refers to the output directory, where i indicates the index of the current
iteration (i = (1, 2, 3, . . .))

COMMAND LINE ACTIONS 15

hmmfile is contained in model/proto/hmm security english, model/proto/hmm security spanish
or model/proto/hmm sil

model/hmmi− 1 indicates the index of the last iteration (0, 1, 2, . . .)

label is ”english”, ”spanish”, or ”sil”

label dir is data/train/lab/

nameofhmm is ”english”, ”spanish”, or ”sil”

This procedure has to be repeated several times for each HMM to train. We need to train
each hmm until it converges. An indicator of convergence is when the number of iterations
each step no longer decreases. The number of iterations per step is reported on the line that
reads: ”Estimation converged at iteration <number>.”

CHAPTER 6

DEFINING YOUR TASK

6.1 Define Your Grammar

Once you have created HMMs for each of the accents you’ll be including in your test
sample, you’re ready to define the task. The first step in defining the task is creating a
grammar, which contains the syntactic structure of examples to be tested. In our case, the
grammar is quite simple. It consists of a start silence, the word ”security”, and an end
silence. The word ”security” can be in spoken with either a Spanish or American English
accent. Thus, we define the grammar file as follows:

$WORD = ENGLISH | SPANISH;
({ START_SIL } [$WORD] { END_SIL })

Essentially, this means that we have a variable called WORD that can take the value SPAN-
ISH or ENGLISH. Additionally, the brackets, {}, indicate one or more occurrences of that
which they enclose, and the other brackets, [], indicate zero or one occurrence of their in-
ner contents. Given these definitions, the syntactic structure of our sample, as indicated by
the second line in our grammar file, is one or more repetitions of START SIL, zero or one
occurrence of either SPANISH or ENGLISH, and one or more repetitions of END SIL.

6.2 Define Your Dictionary

Now that we have defined our task grammar, we must connect the grammar to the HMMs
we developed in the previous chapter. In other words, our system must be able to associate
each variable (SPANISH, ENGLISH, START SIL, END SIL) with an HMM. To do this,
we create another simple file called the task dictionary as follows:

YES [yes] yes
NO [no] no
START_SIL [sil] sil
END_SIL [sil] sil

Here, the elements in the leftmost column obviously correspond to the task grammar’s
variables. The elements in the rightmost column indicate the HMMs to which each of
the variables corresponds. The elements in the middle column specify the symbols that
will be output in the final recognition step. This middle column is optional; by default,
the recognizer will output symbols corresponding to the task grammar variables’ names.
IMPORTANT NOTE: Do not forget the new line at the end of the dictionary file. Failure
to include it will result in the last entry (in this case, END SIL) being ignored.

6.3 Generating the Network

Finally, you are ready to create the network, which will, in essence, serve as a finite state
machine (FSM) through which you can run additional samples to generate labels. To do
this, we use HParse to compile the grammar (gram.txt) into our network. We use the
following command to write our network to file net.slf:

HParse -A -D -T 1 gram.txt net.slf

To test that the network is valid and ready for testing, use HTK tool HSGen to generate ran-
dom sentences that should conform to the syntactic regulations as specified in the grammar.
The following command can be used, assuming the dictionary is defined in dict.txt:

HSGen -A -D -n 10 -s net.slf dict.txt

This should output 10 (as specified by the argument passed to -n) sentences. Check these
to ensure they are in accordance with your grammar rules.

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

17

CHAPTER 7

RECOGNITION

7.1 Procedure

Once you’ve generated a valid network that includes your trained HMMs, you are ready to
classify new sound samples into accent bins. If you did not set aside MFCC samples for
testing, you must once again transform an input signal file into MFCCs using HCopy (as
you did with the training data). Then, we use an implementation of the Viterbi Algorithm
to pass the input through the network and generate a label.

7.2 Command Line Actions

The tool used to run the new test sample (MFCC file) through the network is HVite. Use
the following command to test file input.mfcc:

HVite -A -D -T 1 -H hmmsdef.mmf -i reco.mlf
-w net.slf dict.txt hmmlist.txt input.mfcc

Here, input.mfcc is the input data we’d like to label, hmmlist.txt lists the names
of the models to use (separated by new line characters), dict.txt is the task dictionary,
net.slf is the task network, reco.mlf is the output recognition file and hmmsdef.mmf
is a single file containing a concatenation of the HMMs to be used. If, instead of cre-

ating this file, you’d prefer to list each HMM separately, you can do so by replacing
hmmsdef.mmfwith -H hmm security english -H hmm security spanish
... The output file (reco.mlf) lists the word ”hypotheses” made by the network for
each recognized segment of the input file, along with the start points and end points of
each.

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

19

PART II

ERROR HANDLING,
SOFTWARE USED AND
RESOURCES

APPENDIX A

ERROR HANDLING

Errors that crop up when using HTK can seem confusing initially, but they can be debugged
with a bit of critical thinking and some hints from outside sources. We found the following
sources helpful when debugging:

Ohio State University: Understanding HTK Error Messages

Columbia University: Summary of Errors by Tool and Module

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

21

http://www.ling.ohio-state.edu/~bromberg/htk_problems.html
http://www.ee.columbia.edu/~dpwe/LabROSA/doc/HTKBook21/node256.html

APPENDIX B

SOFTWARE USED

We have provided information about our use of various software (particularly the various
toolkits available through the HTK software) throughout this guide, so we will merely
provide a summary of what

1. Audacity: Useful for processing audio files. Used to splice .wav files to extract spe-
cific words from .wav files. Also useful for generating segments of silence to make
differentiating between SIL labels and spoken words easier.

2. HTK: Maybe even list each of the things we used under HTK & why, i.e. HSLab for
labeling, HParse for whatever

(a) HSLab
Provides a graphical user interface for the labeling of sound files. Accepts wave-
form files (i.e. .sig files recorded directly in HSLab and .wav files that users can
pre-record). The default expected filetype is .sig, so if you plan to use a differ-
ent file type, be sure to include a configuration file (i.e. our analysis.conf)
that specifies the SOURCE FORMAT.

Sample command line invocation:

HSLab -C <config_file.conf> <sound_file.ext>

(b) HCopy
The primary use of HCopy is to copy and manipulate speech files. Another use for
HCopy (and our particular use here) is to convert waveform data to Mel Frequency
Cepstral Coefficients. HCopy accepts pairs of source specifications for .lab files
and destination specifications for the .mfcc files that HCopy will generate for
each of the .lab files.

Sample command line invocation:

HCopy -C <config_file.conf> -S testlist.txt

(c) Hinit
Used to initialize each of the hidden Markov models that will be trained using
HRest to model each of the accents (english, spanish) and silence (soil).

Sample command line invocation:

HInit -A -T 1 -S hinit_trainlist.txt -M model/hmm0
-H model/proto/hmm_security_english -l security_english
-L data/train/lab security_english

(d) HRest
Trains each HMM.

Sample command line invocation:

HRest -A -T 1 -S hinit_trainlist.txt -M model/hmm1
-H model/hmm0/hmm_security_english -l security_english
-L data/train/lab security_english

(e) HParse
Compiles the task grammar into a task network.

Sample command line invocation:

HParse -A -T 1 def/gram.txt net.slf

(f) HVite
Allows you to test your trained HMMs and grammar on a new sample.

Sample command line invocation:

HVite -A -D -T 1 -H hmmsdef.mmf -i reco.mlf
-w net.slf dict.txt hmmlist.txt input.mfcc

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

23

APPENDIX C

REFERENCES

REFERENCES

[1] “Hidden Markov Model”.

[2] ‘HTK Basic Tutorial’.

[3] ‘HCopy Config File’.

[4] UN General Assembly, Universal Declaration of Human Rights, 10 December 1948, 217 A
(III), available at: http://www.refworld.org/docid/3ae6b3712c.html

Probabilistic Accent Detection Using HMMs.
By Calhoun, Parker, Vaslas, and Vera

25

http://en.wikipedia.org/wiki/Hidden_Markov_model
http://www.labunix.uqam.ca/~boukadoum_m/DIC9315/Notes/Markov/HTK_basic_tutorial.pdf
http://www.voxforge.org/home/dev/acousticmodels/linux/create/htkjulius/tutorial/data-prep/step-5

	Introduction
	I HTK Software Suite
	Installation of HTK Software
	General Installation information
	Mac OS X
	Windows

	Training and Testing Corpus Acquisition
	The Online Speech/Corpora Archive and Analysis Resource (OSCAAR)

	Training Corpus with HTK
	Record or Input Sound Files
	Labeling the Sound Files

	Coding the Data
	Mel Frequency Cepstral Coefficients
	Obtaining .mfcc Files
	Configuration File
	The Creation of targetlist.txt

	Command Line Actions

	Setting Parameters for the Hidden Markov Model
	What is a Hidden Markov Model?
	HMMs and Accent Detection
	Overview
	HMM Definition
	Training

	Command Line Actions

	Defining Your Task
	Define Your Grammar
	Define Your Dictionary
	Generating the Network

	Recognition
	Procedure
	Command Line Actions

	II Error Handling, Software Used and Resources
	A Error Handling
	B Software Used
	C References
	References

